BOSTON
UNIVERSITY

Measuring Performance

DL4DS — Spring 2025

https://udlbook.github.io/udlbook/

=== Foundational Concepts ===
v 02 -- Supervised learning refresher
W h e re We a re v 03 -- Shallow networks and their representation capacity
v 04 -- Deep networks and depth efficiency
v" 05 -- Loss function in terms of maximizing likelihoods
v 06 — Fitting models with different optimizers
v 07a — Gradients on deep models and backpropagation

v/ 07b — Initialization to avoid vanishing and exploding weights &
gradients

I:> * 08 — Measuring performance, test sets, overfitting and double
descent

* 09 — Regularization to improve fitting on test sets and unseen data
=== Network Architectures and Applications ===

iy * 10— Convolutional Networks

11 — Residual Networks

12 — Transformers

Large Language and other Foundational Models

Generative Models

Graph Neural Networks

Measuring performance

* Noise, bias, and variance

* Reducing variance

e Reducing bias & bias-variance trade-off

* Double descent

e Curse of dimensionality & weird properties of high dimensional space

* Choosing hyperparameters

MNIST1D

Scaling down Deep Learning

Sam Greydanus !

“A large number of deep learning innovations including dropout, Adam, convolutional
networks, generative adversarial networks, and variational autoencoders began life as
MNIST experiments. Once these innovations proved themselves on small-scale
experiments, scientists found ways to scale them to larger and more impactful
applications.”

S. Greydanus, “Scaling down Deep Learning.” arXiv, Dec. 04, 2020. doi: 10.48550/arXiv.2011.14439.

https://github.com/greydanus/mnist1d

https://doi.org/10.48550/arXiv.2011.14439
https://github.com/greydanus/mnist1d
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114

MNIST Dataset

e 28x28x1 grayscale images
* 60K Training, 10K Test

* “Is to Deep Learning what

fruit flies are to genetics
research”

label=0 label=1 Ilabel=2 label=3 label=4 Ilabel=5 label=6 Ilabel=7 label=8 label=9

4011213171561 7] 819

28

But poorly differentiates model performance:

Model Type Accuracy
Logistic Regression 94%
b MLP 99+%

CNN 99+%

MNIST 1D Dataset

Fixed, 1-D, length-12
templates for each of 10 digit
classes

Generate dataset by
programmatically applying 6
parametric transformations.

Original MNIST examples
label=0 label=1 label=2 label=3 label=4 Ilabel=5 Ilabel=6 Ilabel=7 label=8 label=9

ol /12131715 l6] 71819

Represent digits as 1D patterns

IS sl S e IS

Pad, translate & transform
label=0 label=1 label=2 label=3 Ilabel=4 label=5 label=6 label=7 label=8 label=9

IS LSS TR 11

E.g. pad, shear, translate, correlated noise, i.i.d. noise, interpolation.

See https://github.com/greydanus/mnist1d/blob/master/building_mnistfd.ipynb

https://github.com/greydanus/mnist1d/blob/master/building_mnist1d.ipynb

MNIST 1D

Test accuracy

100 -
80 A
Differentiates performance of different
model types much more than MNIST 60 -
40 -
Shuffle: dataset was permuted along the 20 -
spatial dimension. This ‘shuffled’ version —— [0GIStIC m—"mip — NN — QU = human
measured each of the models’ performances = = shuffle == shuffle == shuffle == shuffle
in the absence of local spatial structure 0~ ' ' ' ' ' '
P 0 1000 2000 3000 4000 5000 6000
Train step
Dataset Logistic regression Fully connected model = Convolutional model ~GRU model Human expert
MNIST 94 £ 0.5 > 99 > 99 > 99 > 99
MNIST-1D 32+1 68 + 2 94 + 2 91 + 2 96 + 1
MNIST-1D (shuffled) 32+1 68 + 2 56 £ 2 57 + 2 ~ 30+ 10

Visualizing MINIST and MNIST-1D with tSNE

MNIST-2D (n=70k, train+test) MNIST-1D (n=5k, train+test)

L
L oONOOLE WNFEO

Visualizing the MNIST and MNIST-1D datasets with tSNE. The well-defined clusters in the MNIST plot indicate that the
majority of the examples are separable via a kNN classifier in pixel space. The MNIST-1D plot, meanwhile, reveals a lack of
well-defined clusters which suggests that learning a nonlinear representation of the data is much more important to achieve
successful classification. Thanks to Dmitry Kobak for making this plot.

https://twitter.com/hippopedoid

https://twitter.com/hippopedoid

MNIST1D Train and Test Set Dataset Samples

label=2 label=9 label=3 label=5 label=7 label=3 label=6 label=8 label=1 Ilabel=3

U L LU B L

* 4,000 training samples
* 17000 teSt Samples (80/20 Split) label=1 label=8 label=6 label=7 label=8 label=3 label=5 label=3 Ilabel=2 label=0

WL el

label=1 label=2 label=0 label=9 label=7 label=9 label=1 Ilabel=8 label=4 label=5

QAR

9

Network

model = torch.nn.Sequential(
torch.nn.Linear(40, 100),

* 40 inputs torch.nn.ReLU(),
« 10 outputs torch.nn.Linear(100, 100),
torch.nn.ReLU(),

Two hidden layers

torch.nn.Linear (100, 10))
100 hidden units each

SGD with batch size 100, learning rate 0.1
6000 steps (?? Epochs)

choose cross entropy loss function
loss_function = torch.nn.CrossEntropyLoss()

construct SGD optimizer and initialize learning rate and momentum
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)

object that decreases learning rate by half every 10 epochs
scheduler = StepLR(optimizer, step_size=10, gamma=0.5)

load the data into a class that creates the batches

data_loader = DatalLoader(TensorDataset(x_train,y_train), batch_size=100, shuffle=True)

inference — just choose the max

pred_train = model(x_train)

pred_test = model(x_test)

_, predicted_train_class = torch.max(pred_train.data, 1)
_, predicted_test_class = torch.max(pred_test.data, 1)

Layer (type:depth-idx) Output Shape Param #
Sequential [1, 10] -
—Linear: 1-1 [1, 100] 4,100
—RelLU: 1-2 [1, 100] -
—Linear: 1-3 [1, 100] 10,100
—RelLU: 1-4 [1, 100] -
—Linear: 1-5 [1, 10] 1,010
Total params: 15,210
Trainable params: 15,210
Non-trainable params: 0
Total mult-adds (Units.MEGABYTES): 0.02
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.06
Estimated Total Size (MB): 0.06

10

0 | Training step

Train
6000

| oss

Ol
0 Training step

11

Need to use separate test data

b) 30

Test
)
n
Test 9
Train 00 Jrain
0 Training step 6000 0 Training step 6000

The model has not generalized well to the new data

12

Measuring performance

* MNIST1D dataset model and performance

e Reducing variance

e Reducing bias & bias-variance trade-off

* Double descent

e Curse of dimensionality & weird properties of high dimensional space

* Choosing hyperparameters

Regression example with Toy Model

sin(27mx)

y=¢€

)
éo'o' x = x + U(+1/num_data)
S

y:y+N(O»Uy)

0 o5 10
Input,

Toy model ,

* D hidden units M
S0

* First layer fixed so “joints”
divide interval evenly, e.g.
0,1/D,2/D, .. (D-1)/D

* Second layer trained

~
0
~—

Activation
o
o

e But... now linearin h

. }Ll h3
* so convex cost function 1053 nput, = |.o)0.o oot = |.0;).0 oot - o
)) e ' f ’ g '
e can find best soln in closed-
form

0.0 Input, x 1000 Input, 1000 Input,

15

Three possible sources of error:
, and

bias, and variance

Genuine stochastic nature of the

ahg Noise E underlying model

* Noise in measurements, e.g. from sensors
 Some variables not observed

* Data mislabeled

GF.B"Col tage Analog to ':-'.!.. > '_;.?: di agm voice coil
Microl| ners Digital ¥ %7 suspension
t /.\/\ 8 Conversion vent
@ ” ol o AN\ ‘ T
-1.0 ® =<3 = X " N ="
0.0 0.5 1.0 _Snoee ©°
. . . \/“Z’:y ® Electrical Signals paat
| n P u t x J (@) . Processing \ |
’ Gl Ivansmvme\ magnet
| | 1)
Arayof | = =M, =™ v B’/ lead
o

CMOS | A AL, —A | cable
Image . . s Image
sssssss S LA O R

5 ~——case

https://images.app.goo.gl/2PuBhaFpfdL9Pyjb8

© Merriam-Webater Inc.

https://images.app.goo.gl/CMDaXSCdX4pgN8Yx7
17

https://images.app.goo.gl/2PuBhaFpfdL9Pyjb8
https://images.app.goo.gl/CMDaXSCdX4pqN8Yx7

occurs because the
model lacks precision or
capacity to accurately match
the underlying function.

~_~"| E.g. optimal fit with 3 hidden
units and 3 line segments

Noise, bias, and

2) Variance

No way to distinguish change in the

true underlying function from noise in | /\
the data. _'/ \

Variability every time we capture
training data and also from stochastic

learning algorithms. o s T T T
Input, x

Noise, bias, and variance

a)l o Noise b) Bias c) Variance
| y ﬁ/ \
b \ - |
0.0 05 1.0 0.0 0.5 1.0 0.0 05

Mathematical
Formulation of

Test Error

UDL 8.2.2
Mathematical Formulation of Test Error

* 1-D regression where underlying data generation process
(unobservable) has additive noise with variance o 2.

Noise
variance: o2
(unobserved)

y:

4
True Data ()
Generation > ® ()
(unobserved) ® e

Training Samples

(observed)
22

Mathematical Formulation of Test Error

* 1-D regression where underlying data generation process
(unobservable) has additive noise with variance o 2.

* For each x there is a distribution P(y|x)

Noise
variance: g2
(unobserved)

True Data @
Generation] ® (")
(unobserved) @ ..

Training Samples
(observed)

UDL 8.2.2

23

Mathematical Formulation of Test Error

* 1-D regression where underlying data generation process
(unobservable) has additive noise with variance o 2.

* For each x there is a distribution of y[x] which is P(y|x)

* We can calculate the expected value (i.e. mean), u[x]:

ulz] = By yl]] = / y(2) Pr(yle)dy,

24

Mathematical Formulation of Test Error

* 1-D regression where underlying data generation process
(unobservable) has additive noise with variance o 2.

* For each x there is a distribution of y[x] which is P(y|x)

* We can calculate the expected value (i.e. mean), u[x]:
Definition of
] = B,y = [ylalPrivie)dy. S

* We can express the noise variance as —
Definition of

(72 — Ey [(Iu[aj] — y[;zj])ﬂ variance in terms of
expectation.

25

Mathematical Formulation of Test Error

* We can write the loss at input x, L[x], between the model prediction
f[x, ¢] and the output at x, y|x]:

2

Liz] = (flz, 9] —ylz])

Mathematical Formulation of Test Error

* We can write the loss at input x, L[x], between the model prediction
f[x, ¢] and the output at x, y[x]:

2
Llz] = (flz, @] - ylz]) Subtract and add p[x], group

_ ((f[m, b] — M[fl?]) 4+ (/L[f] _ y[x]))2 then multiply out

= (flz, 9] — ula])® +2(f[x, @] — plz]) (ulz] — ylz]) + (ulz] — ylz])”,

27

Mathematical Formulation of Test Error

« We are treating y|x] as a random variable, so we can take the
expectation of L[x] with respect to y.

E,[L[z]] = Ey[(f[:p,qs]—u[:c]f+2(f[a:,<b]—u[rc})(u[w]—y[w])+(u[w]—y[w])ﬂ

28

Mathematical Formulation of Test Error

« We are treating y|x] as a random variable, so we can take the
expectation of L[x] with respect to y.

E,[Llz]] = E,|(flz, @]—ulal)” + 2(tlz, ¢] - pla]) (ula]—yle]) + (ula]—yla))’
= (fle, ¢]—plz])” + 2(flx, ¢ — ule]) (ula) ~E, [yla]]) +Ey [(ule] —yla])*]

Using the linear properties of
expectation, we can move it
into the sum.

29

Mathematical Formulation of Test Error

« We are treating y|x] as a random variable, so we can take the
expectation of L[x] with respect to y.

By[Llel] = By|(fle, ¢]-plal)” +2(fle, 6] - pla]) (ule] ~ylal) + (ule]-ylal)’]
= (flz, @] —ple])” +2(fle, 6] — pla]) (ule) —Ey [yla]]) + By [(nl2]—ylz])?]
= (flz, ¢]—lz])” + 2(tlz, @]~ ufe]) -0+ By | (ufe] —yla])”]

Middle term becomes zero.

30

Mathematical Formulation of Test Error

« We are treating y|x] as a random variable, so we can take the
expectation of L[x] with respect to y.

E,[L[z]] = E, [(f[ﬂf, &) —p[2])” + 2(f[z, ¢) - ulz]) (ula] —ylz]) + (ulz] —y[ﬂﬁ])Q]
= (fle, @] —pla])” +2(flz, ¢] — ple]) (ula] —E, [y[2]]) + Ey [(ul2]—yla])’]
= (flz, ¢]—ulz])” + 2(tlz, @]~ pufe]) -0+ By | (ufe] —yla])’]
= (flz, ¢] — pla))® + 02, (8.3)
\ Y : & Standard deviation of
Squared deviation of model noise.

from true mean.

31

Mathematical Formulation of Test Error

* The first term can be further split into bias and variance.

* Parameters ¢ of the model f[x, ¢]| depend on the training dataset
D = {x;,yi}, e.8 fx,¢[D]]
* So the expected model output f, [x] w.r.t. all possible datasets D

f,|lz] =Ep [f z, ¢[D]]]

Mathematical Formulation of Test Error
* We can expand that first term by subtracting and adding f,[x] and
multiply

2

(flz, ¢

——

D]]—p[z])
(112, SIDN 6, 12)) + (1ulo] — o))
(f[;p, o[D]]—1,[z]) 2 + 2 (f[.ﬁl’:, o[D]] -1, [:1:']) (f,‘,, [x] — [:’L‘]) 4 (f“ [x] —p [:13]) “

2

33

UDL 8.2.2
Mathematical Formulation of Test Error

Middle term on previous

* Then take expectation w.r.t. training dataset D:
slide goes to zero. Check!

2

]Ep[(f[:z;,qb[D]] - ,L[;I;])Q] -]ED[(f[:z;,qb[D]] - fu[:zt])Q] + (E,[2] — pla])”.

* We can then Ep [Ey[L[-’IIH]

Ep [Ey[L[:L']]} — ED[(f[x,qf;[Dn —f#[:z;])z] + (£ 2] —pla]) > + o

\ ~ J/ " - J/ —~—
variance bias noise

34

Least squares regression only

Llz) = (ffz, ¢] — ylz])’
* We can show that:
E,[Ll] = (ffz, @] — pla])” + 02
* And then:

o By (Lle]]| = Eo | (ffe, (D] - fulel)”] + (fulel—pla))” + 72

~~ . noise
/ \ Rfanance \ bias \

Expectation over noise Expectation over

Best possible model if True function

in training data ise i
g noise in test data Actual model we had infinite data

More complex interactions between noise, bias and variance in more
complex models. 35

Measuring performance

* MNIST1D dataset model and performance

* Noise, bias, and variance

e Reducing bias & bias-variance trade-off

* Double descent
e Curse of dimensionality & weird properties of high dimensional space

* Choosing hyperparameters

a)I . 6 samples

Variance /\/

/‘\ When measuring (capturing) 6
different data samples with a fixed

NS
model (e.g. 3 hidden units), we get
9 < different optimal fits every time.
S/ \\\,/
;
=/
§_0.0/)

a)

6 samples

e) 10 samples

1.0

Variance /\/

e
/ N\

/ g \)
\'/ ~—
0.0 0.5 1.0 0.0 0.5 1.0
Input, = Input,

Can reduce

variance by

adding more
samples

38

a)I . 6 samples e) 10 samples i) 100 samples

: - FaN
Variance §°‘°/\// \\/ N

— = Can reduce
9 variance by
adding more

Ry /\ &
£y \ |V g \. 5 samples

d) h))

1.0

2|\ Vs e

200

oy v |)
1.0 39
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0

Measuring performance

* MNIST1D dataset model and performance
* Noise, bias, and variance

e Reducing variance

* Double descent
e Curse of dimensionality & weird properties of high dimensional space

* Choosing hyperparameters

Reducing bias
(example with the true function)

a)l 0 3 regions b) 5 regions c) 10 regions

5

=4 \ I/ \ /

S5 4 / \

© 4 ~__~ —
I'Oo.o' 05 1.0 0.0 - 05 1.0 0.0 05 10

We can reduce bias by adding more model capacity.

In this case, adding more hidden units.

41

Reducing bias =2 Increases variance!!

a)l 0 3 regions b) 5 regions c) 10 regions
5 f \
o / A
'I'Oo.o' 05 1000 05 1000 05 10
d) e) f)
1.0
P}
§_o.0
5
O
I'Oo.o' -~ 05 1000 05 1000 05 10
Input, = Input, = Input,

Why does variance increase?

a) b) c)
1.0
=1/ / Ve
gooy/ \ / \ ’
© \\,// \\.,/ N /
%5 1000~ o5~ " To0d0 05 10
d) e) f)
1.0
» N
> //\ // \ /\
3 0.0 | | 7
3 _ / \\§_—/z / \\' //
Ioo.o' S 05 1000 'l'ofi' 1000 'l'o.'i' 10
nput, = nput, x

Describes the training data better, but not the true underlying function (black curve)

Many ways to fit a sample of 15 data points

Bias and variance trade-off for the simple

0.5

Mean squared error

linear model|
.- “
/ (s (i) —24()
———‘ ” -
\]
\‘ f
‘\ ’l' Ep [Ey[L[@"H} =Ep [(f[w,dﬂli]] - fﬂ[x])Z] + (fu[fU]—M[IE])z—i- \a_i/
‘ variance bias noise
\ I'
\ . . ,/
Y bias+variance .
. 1Ce
bias \M =T
. variance

o
o

Model capacity

|2 4=—— Number of hidden units

44

But does picking model capacity to
minimize bias & variance hold for
more complex data and models?

Measuring performance

* MNIST1D dataset model and performance
* Noise, bias, and variance
* Reducing variance

e Reducing bias & bias-variance trade-off

e Curse of dimensionality & weird properties of high dimensional space

* Choosing hyperparameters

. MNIST1D no label noise
| Test error keep
- | / decreasing even as

. 2. | we keep increasing
Traln and TeSt Qé | / mode| Capacity!
Error versus # of "=
Hidden Layers :

1‘ Hidden layer size

* 10,000 training examples
* 5,000 test examples

* Two hidden layers |
* Adam optimizer . .
- Step size of 0.005 Model has memorized the training set
* Full batch

* 4000 training steps

Training parameters = Training examples

47

Now randomize -
15% of the B
training labels

Now we see what looks like bias-variance

MNISTID no label noise

Train

100

200 300
Hidden layer size

400

MNISTID 15% label noise

Train

0

100

200 300
Hidden layer size

trade-off as we increase capacity to the

point where the model fits training data.

Reminder: vertical dashed line is where:
training parameters = # training samples

But then???

48

400

MNISTID no label noise MNISTID 15% label noise

Double

T Test
Descent

Train
0 100 200 300 400 0 100 200 300 400
Hidden layer size Hidden layer %ize

1 Modern or over-

Classical or under- parameterized
parameterized regime regime

Critical regime

Reminder: vertical dashed line is where:

training parameters = # training samples 4o

Same
phenomenon
shows up on
MNIST and
CIFAR100

Reminder: vertical dashed line is where:
training parameters = # training samples

MNISTID no label noise

10
. Train
0 100 200 300 400
Hidden layer size
0.8
0.6
—
o
=
Lu |
D 0.41 :
[
© 1
- 1
lon 1
n I
0.2 :
1
1
0 : Train
10 100 1000

Number of parameters x103

MNISTID 15% label noise

Test

Train

100 200 300 400
Hidden layer size

CIFAR 100

a2
1

Test 20% noise

Test no noise

\“Train no noise

0 10

20 30 40 Q 60 70
Resnet 18 width parameter

Double Descent

Note that training loss is very close
to zero.

Whatever is happening isn’t
happening at training data points
Model never sees test set during
training

Must be happening between the
data points??

MNISTID 15% label noise

\

100

200 300
Hidden layer size

\\\\\joo

51

b) 6 hidden units c) 7 hidden units

a)
1.0
> |/ / /
2/ v v/
3 N 4
~ \./
I‘Oo.o' 05 1000 05 1.0 0.0 05 T 10
d)I . 8 hidden units e) 10 hidden units f) 50 hidden units
y Va
= |/ / /
Y / /
o}
/
© ~—
'I'Oo.o' S 05 1.000 05 1000 05 10
Input, Input, Input, =

Potential explanation:
e can make smoother functions with more hidden units

* being smooth between the datapoints is a reasonable thing to do
But why?

1.0

-1.0

Output, y
Y

Loss = 0 b) Loss = 0 c) Loss = 0
Ve | Vs
| / \
_ / \
| \ \
. /|
0.0 S 0.5 " 1.00.0 0.5 S 1.000 0.5 1.0
Input, x Input, x Input,

* All of these solutions are equivalent in terms of loss.
 Why should the model choose the smooth solution?

* Tendency of model to choose one solution over another is

53

Measuring performance

* MNIST1D dataset model and performance
* Noise, bias, and variance

* Reducing variance

e Reducing bias & bias-variance trade-off

* Double descent

* Choosing hyperparameters

Curse of dimensionality

 40-dimensional data
* 10,000 data points

e Consider quantizing each dimension into
10 bins

* 10*° bins
» 1 data point per 103> bins

* The tendency of high-dimensional space
to overwhelm the number of data points

is called the

2D: 10x10=100 bins

3D: 10x10x10=1000-4ins

Curse: Distances collapse

Generate 1,000 normally
distributed samples in:

2D

3D
100D
1000D

Calculate the ratio of
distances between the
farthest and closest
points.

2D data

T T T T T T
-3 -2 -1 0 1 2

Euclidean Distance ratio

25001

2000+

1500 A

9 1000 A

500

10! 102

3D data

“— Approaches 1!!

56

Curse: Volumes of a hyperspheres

Volume of unit radius hypersphere

Volume

® e
[]
® °
L]
°
(]
[]
°
°
[]
®eooo0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Dimensions

o
©

o
o

Proportion of volume in outer 1%

0.0 1

o
'S
L

o
N
L

Proportion of volume in outer 1% of diameter of hypersphere

Volume

Volume of unit diameter hypersphere

1.0 1
Also the volume ratio
081 o to a unit hypercube
0.6 1
{]
0.4
{]
0.2 4
¢ . Unit diameter

0.01 ®eecccccccccce hypersphereina

2.5 5.0 7.5 Dir:;oé:Sion:.Z.S 15.0 17.5 20.0 unit hypercube.

T
100

150
Dimensions

200

T
250

300

“All the volume goes to the
peel of the orange, not the

pulp.”

See also “An Adventure in the Nth Dimension”, American Scientist

https://www.americanscientist.org/article/an-adventure-in-the-nth-dimension

b) 6 hidden units c) 7 hidden units

a)
1.0
= /’\ /
5
70.04]]
g 4 4
@) o v N)/I
"'00.0' - 05 S 1.000 05 1000 05)
d)I . 8 hidden units e) 10 hidden units f) 50 hidden units
N
E;OO
o}
S 74 / 4
\'5) ®
! '00.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Input, = Input, = Input, x

Potential explanation:
It seems that through implicit and explicit regularization (next lecture!) the

(well trained) model tends to interpolate smoothly between training data

points.

Measuring performance

* MNIST1D dataset model and performance
* Noise, bias, and variance

* Reducing variance

e Reducing bias & bias-variance trade-off

* Double descent
e Curse of dimensionality & weird properties of high dimensional space

Choosing hyperparameters

* Don’t know bias or variance
* Don’t know how much capacity to add

* How do we choose capacity in practice?
* Or model structure
e Or training algorithm
* Or learning rate

* Third data set —
* Train models with different hyperparameters on training set
* Choose best hyperparameters with validation set
e Test once with test set

Feedback?

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

